Scientists believe diamonds in meteorite hail from lost planet in our solar system

17 Apr 2018 | Canada
Scientists believe diamonds in meteorite hail from lost planet in our solar system

Scientists believe diamonds in meteorite hail from lost planet in our solar system.

Meteorite fragments belong to unique type of rock that is poorly understood.

A new study suggests that diamonds found within a meteorite that landed on Earth in 2008 were created by an early lost planet in our solar system.

On Oct. 7, 2008, asteroid 2008 TC3, an 80-metric-ton rock measuring 4.1 metres in diameter, lit up the sky over the Nubian Desert in Sudan.

Although astronomers knew the rock — which belongs to the Almahata Sitta group of meteorites — didn't pose a danger to people, they were anxious to collect samples, hoping it could reveal more about the formation of our solar system. 

By looking at the diamonds in asteroid 2008 TC3, the researchers hoped to find an answer about the origin of the meteorite.

Our early solar system was a chaotic shooting gallery. After the sun formed roughly 4.5 billion years ago, dust and debris collided and formed larger bodies. Astronomers believe that as many as 10 lost planets once existed.

"Some of [these bodies] collided and were destroyed. Some were thrown out of the solar system," Farhang Nabiei, lead author of the paper and a scientist with the Earth and Planetary Science Laboratory at the Ecole Polytechnique Federale de Lausanne in Switzerland, told UkrCanada News.

"But we don't have information from them. We don't have much evidence from those specific planetary embryos."

That's what makes this latest discovery potentially exciting.

The key is in the diamonds

Almahata Sitta meteorites belong to an ancient group of asteroids called ureilites, which are rocks that have been melted and are rich in carbon. They contain graphite and tiny diamonds and are extremely strong, similar to what we may find in Earth's mantle.

Diamonds form in one of three ways: from a shockwave that transforms the mineral graphite into diamonds during a high-energy impact, such as the collision of objects; growth from carbon-rich gas vapour in the early solar nebula; or under extremely high pressure inside a body, like what occurs here on Earth.